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1. Introduction and summary

Recently, there has been a lot of progress in the investigation of KKLT-type models [1].

On the one hand, specific examples of candidate models have been constructed [2, 3].

On the other hand, the generation of a non-perturbative superpotential which may serve

to stabilize all Kähler moduli has been investigated in much detail. The recent research

in this line extends the earlier work of Witten [4] by taking into account non-vanishing

background fluxes [5 – 10] and working out the conditions for the generation of the super-

potential directly for type IIB-orientifolds without the detour of analyzing the M/F -theory

case first [11 – 13]. If M5/D3-brane instantons wrapping a divisor in the compactification

manifold are the source of a possible non-perturbative superpotential, the analysis involves

deriving the Dirac equation in the world-volume of the M5/D3-brane and studying the

structure of its fermionic zero modes. So far, only the case of the background flux being

of Hodge type (2, 2) in M/F -theory, or (2, 1) in type IIB-theory has been considered.

The present letter resolves a seeming puzzle concerning the fermionic zero mode struc-

ture in the presence of background fluxes of general Hodge type. As has been shown

in [14, 15], the conditions for a supersymmetric background flux obtained from the mini-

mization of the effective four-dimensional superpotential change in the presence of a non-

perturbative term. The supersymmetric flux is no longer of Hodge type (2, 2) (resp. (2, 1)

for type IIB), but receives contributions of all Hodge types. We will show that, if one

now, guided by this result, plugs a flux of general Hodge type into the zero mode conditions
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obtained from the Dirac equation, an inconsistency arises: If with (2, 2)-flux, the conditions

for the generation of a superpotential were met, this is no longer the case for general flux.

As we explain in the following, this apparent mismatch disappears after the introduc-

tion of a modification of the supersymmetry variation of the modulino, which basically

captures the back-reaction of the non-perturbative effects on the background flux and the

geometry.

This paper is organized as follows. In section 2, we discuss the supersymmetry condi-

tions on the background flux as obtained from the effective potential as well as from the

supersymmetry variation of the modulino. In section 3, the fermionic zero modes on the

world-volume of D3/M5-branes are analyzed. First, we study the conditions on the zero

modes originating from the Dirac equation in the presence of fluxes of general Hodge type.

We find a modification from the case of pure (2, 2), (respectively (2, 1)) flux. To further

elucidate the effect of allowing general background fluxes, the concrete example of com-

pactification of M/F -theory on K3 × K3 is presented. If a pure (2, 2)-flux is turned on, a

non-perturbative superpotential is generated. If, on the other hand, we allow other Hodge

components, which a supersymmetric flux solution in the presence of a non-perturbative

superpotential requires, all zero modes are lifted and no non-perturbative superpotential

is generated. Thus, an obvious inconsistency arises.

In section 4, we set out to resolve the puzzle. We find that the non-perturbative

superpotential must be included into the susy variation of the 11-dimensional gravitino

field after compactification, which in turn determines the Dirac equation and therefore the

number of zero modes. Like this, the (4, 0)– and (3, 1)-parts of the flux are balanced by

the contribution from the non-perturbative superpotential, and the number of zero modes

remains the same as for (2, 2)-flux.

2. The supersymmetry conditions

In this section, we will study the supersymmetry conditions for the low energy theory

arising from string compactifications in the presence of background fluxes and due to non-

perturbative effects. We will first obtain the susy conditions by minimizing the effective

potential and then by analyzing the spinor conditions. We work out the case for IIB com-

pactification on Calabi-Yau threefolds and then briefly discuss M -theory compactification

on Calabi-Yau fourfolds.

2.1 Effective potential

We first consider the compactification of type IIB theory on a Calabi-Yau threefold. The

resulting low energy supergravity action is given by

S =

∫

d4x
1

2

√−g
{

R + gAB∂µzA∂µzB
}

+ Veff + Sgauge . (2.1)

Here, we used a condensed notation: The indices {A,B, . . .} = {i, I, τ} denote both the

complex structure moduli {i}, Kähler moduli {I}, and the complexified axion-dilaton
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field τ . Sgauge denotes the gauge field dependent part of the action. The effective po-

tential

Veff =
1

2
eK

(

gABDAWDBW − 3|W |2
)

(2.2)

is given in terms of the total superpotential

W = Wflux + Wnp (2.3)

and the Kähler potential K. Here Wflux is the flux superpotential [16]

Wflux =

∫

G3 ∧ Ω3 , (2.4)

and Wnp is the superpotential arising from nonperturbative effects. Ω3 is the holomorphic

(3, 0)-form on the CY space and

G3 = F3 − τH3 , (2.5)

F3 and H3 being the RR and NS field strengths, respectively. The flux superpotential

depends only on the complex structure moduli. We assume the nonperturbative superpo-

tential to depend on the Kähler moduli only.

The supersymmetry preserving minima are obtained by solving the equations

DAW = 0 . (2.6)

It is well known that in the absence of a nonperturbative term, W = Wflux, the condi-

tion (2.6) requires G3 to be of type (2, 1) [17]. For Wnp 6= 0, this is no longer true [15], and

G3 acquires non-vanishing (1, 2), (3, 0) and (0, 3) parts:
∫

G3 ∧ χ
(2,1)
i + ∂iKWnp = 0 ,

∫

G3 ∧ Ω3 ∂IK + DIWnp = 0 ,
∫

G3 ∧ Ω3 + Wnp = 0 . (2.7)

The primitivity condition G3 ∧ J = 0, being a D-term condition, remains intact despite

Wnp. Here χ
(2,1)
i is a form of type (2, 1).

We can similarly obtain the susy conditions for M-theory compactification on a Calabi-

Yau fourfold. The flux superpotential is now given by [18]

Wflux =

∫

G4 ∧ Ω4 . (2.8)

Here, G4 is the four-form flux present in 11-dim. supergravity theory and Ω4 is the holo-

morphic (4, 0)-form on the CY fourfold. The susy conditions take the form:
∫

G4 ∧ χ
(3,1)
i + ∂iKWnp = 0 ,

∫

G4 ∧ Ω4 ∂IK + DIWnp = 0 . (2.9)

In the following subsection, we will show how the above conditions can be derived from

the modulino variations.
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2.2 Spinor conditions

Now, it is important to remember that the BPS susy variation of the gravitino is equivalent

to solving the susy conditions in the effective field theory, as discussed in [19] for M-theory

on a fourfold, in [20] and in [21] for type IIB on a CY threefold, and also by [22] for the

heterotic string. Thus we must modify the spinor conditions accordingly in order to obtain

the susy conditions eq. (2.7) in IIB theory and eq. (2.9) in M-theory. In what follows,

we will first review the spinor conditions in the absence of Wnp, and then consider the

generalization when Wnp is included.

Let us first consider the situation in IIB theory. This has been worked out in [21].

The supersymmetry variations can be summarized as follows:

κδψµ = ∂µε − 1

8
γµγm

(

∂m ln Z − 4κZΓ4∂mh
)

ε +
1

16
κγµGε∗,

κδψm =

(

D̃m − i

2
Qm

)

ε +
1

8
ε∂m ln Z − 1

16
κγmGε∗ − 1

8
κGγmε∗,

κδλ∗ = −iγmP ∗
mε +

i

4
κGε∗. (2.10)

The first equation is the supersymmetry variation of the four-dimensional gravitino field.

Second, δψm corresponds to the variation of the internal gravitino. After compactification

the internal gravitino degrees of freedom become in the effective 4D field theory the mod-

ulino fields, i.e. the fermionic superpartners of the Kähler and complex structure moduli

fields. Concretely, the modulino equations which one obtains by dimensional reduction1

(see appendix) are

δφi
eab

= −1

8
Gi

eab
ξ̂∗ − 1

16
gacgeaG

i
abc

ξ̂∗ , i = 1, . . . , h(2,1) ,

δφI
e|ab

= − 1

16
Geabξ̂

∗ , I = 1, . . . , h(1,1) ,

δλ∗
abc

=
i

4
Gabcξ̂

∗ , (2.11)

where ξ̂ is a four dimensional supersymmetry parameter.2 Finally, δψm indeed comprises

the supersymmetry variations of all modulinos, namely it leads after compactification to

h1,1 +h2,1 independent spinor equations, which we call modulino equations. Finally, δλ∗ is

the supersymmetry variation of the four-dimensional dilatino. In these equations, we use

the same notation as [21]. In particular, G = 1
6Gmnpγ

mnp, Z is the warp factor, D̃m is the

covariant derivative with respect to the internal metric, h is related to the RR four-form

field, h = C0123, and

Pm = f2∂mB , Qm = f2Im (B∂mB∗) ,

1These equations could be also derived from the supersymmetry variations in four dimensions. We

chose this discussion since it provides a complementary derivation of the SUSY conditions from the higher

dimensional point of view.
2Gi

abc̄ denotes Giω
i
abc̄ with no sum over i. The left and the right hand side of the first equation in (2.11)

factorize in different way. That is why we cannot rewrite the equations using only for Gi. For a further

comment on the double indices notation see the last paragraph of the appendix.

– 4 –



J
H
E
P
0
8
(
2
0
0
6
)
0
7
1

B =
1 + iτ

1 − iτ
, f−2 = 1 − BB∗. (2.12)

The conditions (2.10) can be solved to show that G3 is of type (2, 1) and primitive.

Clearly, the explicit dependence on the superpotential Wflux and its covariant deriva-

tives is not apparent in the modulino variations (2.11). We need to make this precise,

in order to generalize the above formulae in presence of Wnp. Since we are interested in

the G3 dependence of the variations, we can as well ignore the effects of warping and the

five-form flux, and also set the complexified axion-dilaton field to constant.

It is now easy to introduce the flux superpotential in the above equations. Note that

DiWflux =

∫

G3 ∧ χ2,1
i =⇒ Gi

abc
= ωabcDiWflux ,

DIWflux = ∂IK

∫

G3 ∧ Ω3 =⇒ Gabc = ωabc

DIWflux

∂IK
. (2.13)

ωabc has in principle an additional index i. This is the same index as in DiWflux. In order

to avoid writing that there is no summation over i in terms like ωi
abc

DiWflux we suppress

in the following the index of ω.

Substituting the above into the modulino variations, we find

δφi
eab

= −1

8
ωeabDiWflux −

1

16
gacgeaG

i
abc

ξ̂ , i = 1 . . . h(2,1) ,

δφI
e|ab

= − 1

16
ωeab

DIWflux

∂IK
, I = 1 . . . h(1,1) . (2.14)

Similarly, using

Gabc = −ωabc(τ − τ)DτWflux , (2.15)

we find

δλ∗
abc

= − i

4
ωabc(τ − τ)DτWfluxξ̂ . (2.16)

For covariantly constant spinors, we recover the susy conditions

DiWflux = DIWflux = DτWflux = 0 . (2.17)

Now, it is easy to generalize the spinor variations in presence of the non-perturbative

superpotential. We simply replace Wflux by W = Wflux + Wnp. The variation equations

then become

δφi
eab

= −1

8
ωebcDiW − 1

16
gacgeaG

i
abc

ξ̂ ,

δφI
e|ab

= − 1

16
ωeab

DIW

∂IK
,

δλ∗
abc

= − i

4
ωabc(τ − τ)DτW . (2.18)
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We clearly see that, for covariantly constant spinors, the first of the above equations implies

the flux to be primitive and in addition DiW is zero. The second and third equations then

imply that DIW and DτW are zero respectively. Thus we recover the susy conditions

DiW = DIW = DτW = 0 . (2.19)

We now proceed to work out the modulino transformations in M-theory in presence of

Wnp in a similar fashion. This has been analyzed in [19]. We will first express the variation

equations in terms of the flux superpotential, and then generalize it to the case of Wnp 6= 0.

Consider first the internal gravitino variation without Wnp:

δψm = ∇mξ +
1

24
γnpqGmnpqξ . (2.20)

By dimensional reduction we obtain (see appendix)

δφk
ec =

1

4

(

Gebcdg
bd

)k

ξ̂ , k = 1, . . . , h(1,1) ,

δφi
eabc

=
1

24
GI

eabc
ξ̂ , i = 1, . . . , h(3,1) ,

δφI
e|abc

=
1

24
Geabcξ̂ , I = 1, . . . , h(1,1) . (2.21)

By solving the susy conditions, we get in general h3,1 equations for the complex structure

moduli and h1,1 equations for the Kähler moduli. The same conditions should be repro-

duced by setting δφi and δφI to zero. There are h3,1 fluxes of type (1, 3). The (0, 4)-flux is

a solution of h1,1 independent equations. Because of these reasons, it is natural to say that

for every Gabcd and every Gabcd (same Gabcd coming from h1,1 equations), the variation of

the gravitino should be zero.

There is no I on the r.h.s. This emphasizes the fact that the h1,1 supersymmetry

conditions are degenerate in the (0, 4)-flux. Using

DiWflux =

∫

G4 ∧ χi
3,1 = Gi

ebcd
ωebcd (2.22)

and

DIWflux = ∂IK

∫

G4 ∧ Ω4 = ∂IKGebcdω
ebcd , (2.23)

we can immediately rewrite (2.21) into

δφk
ec =

1

4

(

Gebcdg
bd

)k

ξ̂ , k = 1, . . . , h(1,1) ,

δφi
eabc

=
1

24
ωeabcDiWfluxξ̂ , i = 1, . . . , h(3,1) ,

δφI
e|abc

=
1

24
ωeabc

DIWflux

∂IK
ξ̂ , I = 1, . . . , h(1,1) . (2.24)

The supersymmetry conditions and the primitivity condition are reproduced by setting

δφk, δφi, δφI to zero.
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This gives immediately

gad̄gbc̄Gebcd = 0 ,

DiWflux = 0 , i = 1, . . . , h1,3 ,

DIWflux = 0 , I = 1, . . . , h1,1 . (2.25)

These equations correspond to the primitivity conditions on G2,2 and the vanishing of G1,3

and G0,4.

In the next step, we would like to make a proposal for the form of the additional terms

of the supersymmetry variation of the modulinos in the presence of the non-perturbative

term Wnp. The supersymmetry conditions which should be reproduced, change to

DiW = DiWflux + DiWnp = 0 ,

DIW = DIWflux + DIWnp = 0 . (2.26)

From (2.24), we immediately see that the variation of the modulinos should be changed to

δφk
ec =

1

4

(

Gebcdg
bd

)k

ξ̂ , k = 1, . . . , h(1,1) ,

δφi
eabc

=
1

24
ωeabcDiWξ̂ , i = 1, . . . , h(3,1) ,

δφI
e|abc

=
1

24
ωeabc

DIW

∂IK
ξ̂ , I = 1, . . . , h(1,1) . (2.27)

3. Conditions on the zero modes from fluxes and the non-perturbative

superpotential

The non-perturbative superpotential may be generated via gaugino condensation or via

instanton effects or both. Here, we will concentrate on the case of instantons. In type IIB

theory, they correspond to Euclidean D3-branes wrapping divisors of the CY threefold,

whereas in M-theory, they come from Euclidean M5-branes wrapping divisors of the CY

fourfold. It has been pointed out by Witten [4] some time ago that the necessary condition

for an M5-instanton to generate a superpotential is that the corresponding divisor has

holomorphic Euler characteristic equal to one. This provides a stringent condition on the

possible CY fourfolds [23]. For type IIB compactification on a Calabi-Yau without the

orientifold projection (without flux), the index is always zero and hence no superpotential

is generated due to instanton effects [11]. It has been argued recently [24], that the index

might change in the presence of flux. An explicit example has been constructed to show

that some of the world-volume fermion zero modes are lifted due to flux [6]. Subsequently,

a generalized index formula was derived in M-theory [7, 8], as well as in type IIB the-

ory [11]. However, these results are based on the assumption that the flux is primitive

and of type (2, 1) in type IIB, or (2, 2) respectively in M-theory. As we have already

discussed, the supersymmetric flux no longer remains (2, 1) (resp. (2, 2)) in presence of the

non-perturbative superpotential. In this section, we will analyze the fermion zero modes

on the world volume of D3/M5-branes in the presence of general flux.
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3.1 General fluxes

The fermionic bilinear terms in the D3-brane world-volume action in presence of back-

ground flux have been derived in [25, 6] by using the method of gauge completion, and also

in [26, 27, 9] from the M2-brane world volume action using T-duality. Upon Euclidean

continuation and by an appropriate gauge choice [11], the Lagrangian takes the form

LD3 = 2
√

det g θ

{

e−φγm∇m +
1

8
G̃mnp̂γ

mnp̂

}

θ . (3.1)

Here m,n, . . . are directions along the brane and p̂ stands for directions transverse to the

brane. As always, we turn on the three-form flux only along the directions of the internal

manifold. Also for simplicity, we set the flux F2 due to the world-volume gauge fields to

zero. G̃ is defined to be

G̃mnp = e−φHmnp + iF ′
mnpγ5 , (3.2)

with F ′ = dC2 − C0H3. The Dirac equation, obtained from the above action, reads
{

e−φγm∇m +
1

8
G̃mnp̂γ

mnp̂

}

θ = 0 . (3.3)

Locally, we can express the internal metric as

ds2 = gab̄dyadyb̄ + gzz̄dzdz̄ , (3.4)

where a, b, . . . are complex coordinates on the D3-brane and z, z are directions transverse

to the brane. We define the Clifford vacuum to be

γz|Ω〉 = γa|Ω〉 = 0 . (3.5)

The spinor θ can be written in terms of positive and negative chirality spinors as θ = ε++ε−
with

ε+ = φ|Ω〉 + φaγ
a|Ω〉 + φabγ

ab|Ω〉 ,

ε− = φzγ
z|Ω〉 + φazγ

az |Ω〉 + φabzγ
abz|Ω〉 . (3.6)

Substituting this into the Dirac equation, we find

e−φ2gaa∂aφa + 2igzzgab′gba′

Gabzφa′b′z +
1

2
igzzgabφzGabz = 0 ,

e−φ
(

∂a′φ + 4gab′∂aφb′a′

)

+
1

2
igzzgab

(

φa′zGabz − 2φbzGaaz

)

= 0 ,

e−φ∂[a′φb′] +
1

2
igzzgab

(

φa′b′zGabz − 4φbb′zGaa′z

)

+
1

4
igzzφzGa′b′z = 0 (3.7)

and

e−φ2gaa∂aφaz + igab′gba′

φa′b′Gabz +
1

4
igabφGabz = 0 ,

e−φ
(

∂a′φz + 4gab′∂aφb′a′z

)

− 1

4
igab

(

φa′Gabz − 2φbGaa′z

)

= 0 ,

e−φ∂[a′φb′]z
+

1

4
igab

(

φa′b′Gabz − 4φbb′Gaa′z

)

+
1

8
iφGa′b′z = 0 . (3.8)

– 8 –
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We can similarly work out the equations for world-volume M5-brane fermions. The

fermionic bilinear terms on the M5-brane world-volume in the presence of background flux

have been derived in [5]. Upon setting the world volume gauge flux to zero, we have the

Dirac equation

γm∇mθ − 1

24
γ q̂γmnpGmnpq̂θ = 0 . (3.9)

Again, we turn on the fluxes only along the compact directions. Here, m,n, p, . . . are real

indices. A ‘̂ ’ indicates the directions transverse to the brane. We denote by a, b, . . . the

holomorphic indices along the brane and by ā, b̄, . . . the anti-holomorphic indices; z is the

complex coordinate along the normal to the divisor. The spinor θ can be expressed in

terms of the Clifford vacuum and the creation operators as

θ = φ|Ω〉 + φz̄γ
z̄|Ω〉 + φāb̄γ

āb̄|Ω〉 + φz̄āb̄γ
z̄āb̄|Ω〉 . (3.10)

Plugging this expression for θ into the Dirac equation, we find

(∂c̄φ + 4gbb̄′∂bφb̄′ c̄)

+
1

2

[

4gaā′

gbb̄′gzz̄(Gabb̄′zφz̄ā′ c̄ − Gabc̄zφz̄ā′ b̄′) + gzz̄gab̄φz̄Gab̄c̄z

]

= 0 ,

(∂āφz̄ + 4gbb̄′∂bφz̄āb̄′)

−1

4

[

4gaā′

gbb̄′(Gabb̄′ z̄φā′ c̄ − Gabc̄z̄φā′ b̄′) + gab̄φGab̄c̄z̄

]

= 0 ,

∂[āφb̄c̄] +
1

12
gzz̄φz̄Gāb̄c̄z = 0 ,

∂[āφz̄b̄c̄] +
1

24
φGāb̄c̄z̄ = 0 . (3.11)

These expressions can be simplified a lot using the primitivity condition:

(∂c̄φ + 4gbb̄′∂bφb̄′c̄) − 2gaā′

gbb̄′gzz̄Gabc̄zφz̄ā′ b̄′ = 0 ,

(∂āφz̄ + 4gbb̄′∂bφz̄āb̄′) + gaā′

gbb̄′Gabc̄z̄φā′ b̄′ = 0 ,

∂[āφb̄c̄] +
1

12
gzz̄φz̄Gāb̄c̄z = 0 ,

∂[āφz̄b̄c̄] +
1

24
φGāb̄c̄z̄ = 0 . (3.12)

The equations are modified due to the (3, 1)– and (4, 0)-fluxes, and so is the zero mode

counting. To understand this better, we shall turn to the example of compactification on

K3 × K3.

3.2 Example: K3 × K3

To acquire a better understanding of the above equations, we consider here the example of

M/F-theory compactified on K31 × K32 with background flux [29, 10, 30]. Consider one

of the K3s (say K32) to be elliptically fibered. Wrap the M5-brane on one of the divisors

of the form K3× S, where S corresponds to the P 1s of the elliptic K3. Let z parametrize

the direction normal to the brane.
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We will now briefly review the case of the flux being of type (2, 2) and primitive and

then consider the case of general flux. Let us first analyze the case of the flux preserving

N = 2 supersymmetry. In this case, the (2, 2)-flux must take the form

G4 ∈ H1,1(K31) ⊗ H1,1(K32) , (3.13)

which implies that the N = 2 flux must be a (1, 1)-form in K32. Since it is an elliptically

fibered K3, we have to use the spectral sequence, which tells us that the flux belongs to [28]

H0(B,R2π∗R) ⊕ H2(B,π∗R) ,

which in simple terms means that the flux has either both legs in the fiber or both in the

base. So the N = 2 flux is always of the type Gab̄cd̄ or Gab̄zz̄ . Contrarily to this, the flux

appearing in the Dirac equation of the brane world-volume is always of type Gab̄cz̄ or Gab̄zc̄ .

Thus for N = 2 flux, the Dirac equation does not change at all and the zero modes are

same as those of the fluxless case.

We now turn our attention to fluxes preserving N = 1 supersymmetry. Such a flux is

of the form

G4 ∈
(

H2,0(K31) ⊗ H0,2(K32)
)

⊕
(

H0,2(K31) ⊗ H2,0(K32)
)

. (3.14)

In addition, it may contain flux of the form as given in eq. (3.13). The susy conditions

in presence of such a flux have been analyzed in great detail in [29]. It has been realized

there, that by an appropriate choice of (2, 2) primitive flux, it is in fact possible to lift

all the complex structure as well as Kähler moduli except the overall size of the K3. It

has also been noticed that the fluxes of the type given in eq. (3.14) stabilize both the K3s

at an attractor point [30]. Attractive K3 surfaces are completely classified. They are in

one-to-one correspondence with the (SL(2, Z) equivalent) matrices

Q =

(

2a b

b 2c

)

,

where a, b and c are integers, and in addition a, c and the the determinant of Q are required

to be positive. Two such matrices represent the same K3 if they are SL(2, Z) equivalent.

It has been shown in ref. [30], that the tadpole cancellation condition puts very strong

constraints on the integers a,b and c appearing in the above matrix Q. Thus the N = 1

solutions are very limited and all of them can be determined.

We now consider M5-branes wrapping divisors of the form K3×S in presence of such

a flux. Locally, these fluxes are of the form Gabcz, Gabcz. The divisors under consideration

have the cohomology

H1,0(K3 × P 1) = H3,0(K3 × P 1) = 0 . (3.15)

Since φz̄ and φz̄āb̄ belong to these cohomology groups, they must be identically zero. We

can now clearly see from the Dirac equations that the forms φ, φab are harmonic, and in

addition we have

gaā′

gbb̄′Gabc̄z̄φā′ b̄′ = 0 . (3.16)
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This condition lifts the φā′ b̄′ mode. Hence, we only have massless modes corresponding to

φ ∈ H0,0(D). Note, that all the spinors also carry an SO(2, 1)-index, and hence there is a

doubling of massless modes. Since H0,0(D) is one-dimensional, we are now left with two

fermion zero modes, which is the right number for the instanton to contribute to Wnp.

We now study the Dirac equations in presence of (3, 1)– and (4, 0)-flux. They take the

simple form

(∂c̄φ + 4gbb̄′∂bφb̄′c̄) = 0 ,

gaā′

gbb̄′Gabc̄z̄φā′ b̄′ = 0 ,

∂[āφb̄c̄] = 0 ,

φGāb̄c̄z̄ = 0 . (3.17)

Again, we find from the above that the forms φ, φab are harmonic. In addition, we find that

both zero modes φ as well as φab must be zero. Thus the presence of (4, 0)-flux lifts all the

zero modes. As a result, we don’t have any contribution to Wnp from the M5-instantons.

We have seen in the above that we can choose an appropriate (2,2) flux preserving

N = 1 susy, so that we have the correct number of fermion zero modes to have a non-

perturbative superpotential. But once we include a (4,0) flux, as enforced by the non-

perturbative term in the susy conditions, all the zero modes are lifted which means that it

is not consistent to keep the non-perturbative term. This raises a puzzle which we intend

to resolve in the following section.

4. Inclusion of the non-perturbative superpotential into the zero mode

counting

In the last section, we have seen that a (4, 0)-component of G lifts all zero modes. On the

other hand, the susy conditions tell us that the (4, 0)-part of G is non-zero in the presence

of Wnp. So there is an apparent mismatch. The resolution of this puzzle seems to be to

include Wnp into the Dirac equation which determines the number of zero modes. Then,

G4,0 should be balanced against Wnp, as it is the case for the susy conditions.

The Dirac part of the world-volume action on an M5-brane with fluxes has the form [8]:

LM5
f =

1

2
θ[γ̃m∇m +

1

24
(γm̂n̂p̂γ̃qGqm̂n̂p̂ − γ q̂γ̃mnpGmnpq̂)]θ . (4.1)

For us, it is important to note that the corresponding Dirac equation, whose solutions

count the number of fermionic zero modes, is essentially determined by the susy variation

of the 11-dimensional gravitino field. This can be seen as follows [11]. The supersymmetry

conditions on the bulk, closed string background are given by

δψM ε = 0 , (4.2)

which is the supersymmetry transformation of the 11-dimensional gravitino. This can be

translated to the linear part of the Dirac equation from the world-volume action as follows:

(1 − ΓM5)Γ
αδψαθ = 0 . (4.3)
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Here, δψα is the pull-back of the gravitino variation to the brane via δψα = δψM∂αxM and

Γα = ΓNeN
M∂αxM . Therefore, one sees that the pull-back of the bulk gravitino equation is

equivalent to a solution of the Dirac equation. Furthermore, one has to take into account

the constraint from κ-symmetry on the M5-brane:

(1 + ΓM5)θ = 0 . (4.4)

The number of zero modes is then given by the difference between the numbers of solutions

of these two equations.

As we have already stated, we can recover the M5-brane world-volume action eq. (4.1)

by using the explicit expressions for the internal gravitino variations in the absence of Wnp

in eq. (4.3). We have already seen in §2 that turning on Wnp alters the susy equations

in the effective potential, as the effective superpotential now is W = Wflux + Wnp. This

addition should be described by the modulino equations, i.e. δφi = δφI = 0 should be now

equivalent to DWflux + DWnp = 0.

Substituting the expressions for the internal gravitino transformations with the general

fluxes in (4.1), one obatins

(∂c̄φ + 4gbb̄′∂bφb̄′c̄) − 2gaā′

gbb̄′gzz̄Gabc̄zφz̄ā′ b̄′ = 0 ,

(∂āφz̄ + 4gbb̄′∂bφz̄āb̄′) + gaā′

gbb̄′Gabc̄z̄φā′ b̄′ = 0 ,

∂[āφb̄c̄] +
1

12
gzz̄φz̄Gāb̄c̄z = 0 ,

∂[āφz̄b̄c̄] +
1

24
φGāb̄c̄z̄ = 0 . (4.5)

This is a set of local equations in the internal space. Every summand of (4.5) vanishes

separately. This means that the set of equations

Gabczφ
abz = 0 ,

Gabczφ
ab = 0 ,

Gabczφ
z = 0 ,

Gabczφ = 0 (4.6)

is preventing the φ, φa, φab and φabz to be non-trivail zero-modes in the case of general flux

G3. On the other hand Gmnpq correspond to the three-dimensional constant scalar fields

which one obtains as coefficients by expansion of G3 in the harmonic basis on CY4:

G4 = Gabcddza ∧ dzb ∧ dzc ∧ dzd +

h(3,1)
∑

i=1

Gi
abcdω

i abcd

+

h(2,2)
∑

k=1

Gk
abcd

ω̃k abcd +

h(3,1)
∑

i=1

Gi
abcd

ω̄i abcd

+Gabcddz̄ā ∧ dz̄ b̄ ∧ dz̄ c̄ ∧ dz̄d̄ (4.7)

with ω̃k being basis elements of H2,2. Since H2,0 = 0, they can be expressed in terms of the

basis elements ωI of H1,1 as ω̃k =
∑

I,J χk
IJωI ∧ωJ . The scalar fields G, Gk, Gi are related
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to the flux superpotential by (2.22) and (2.23). From the modulino equations (2.27) we see

that Wflux has to be replaced by W = Wflux + Wnp. This corresponds to the modification

of G to

Ĝ2,2 : Ĝabcd = Gabcd ,

Ĝi
1,3 : Ĝi

abcd
= ωabcdDiW = Gi

abcd
+ ωabcdDiWnp ,

Ĝ0,4 : Ĝabcd = ωabcd

DIW

∂IK
= Gabcd + ωabcd

DIWnp

∂IK
. (4.8)

This amounts to modifying the world volume action (4.1) in presence of the nonper-

turbative superpotential, where we now replace G by Ĝ. It is then straightforward to see

that, using the susy conditions DiW = DIW = 0, the Dirac equation can be expressed as:

(∂c̄φ + 4gbb̄′∂bφb̄′c̄) = 0 ,

(∂āφz̄ + 4gbb̄′∂bφz̄āb̄′) + gaā′

gbb̄′Gabc̄z̄φā′ b̄′ = 0 ,

∂[āφb̄c̄] = 0 ,

∂[āφz̄b̄c̄] = 0 . (4.9)

These conditions are identical to the ones coming from (2, 2) primitive flux without Wnp.

The (4, 0)– and (3, 1)-parts of the flux are compensated by the nonperturbative term. As a

result, we find that the number of fermion zero modes is unaltered. The apparent mismatch

of the two answers in the previous section was due to the fact that we had then ignored

the back-reaction of the instanton on the background flux and the geometry. Once we take

care of this by modifying the fermionic terms accordingly, we obtain the expected result.

For the type IIB Euclidean D3-brane, the story is very similar, hence we will be very

brief in the following. The Dirac Lagrangian can be written in terms of the type IIB

gravitino variation, where in addition also the dilatino variation appears:

LD3
f =

1

2
e−φ

√

det g θ̄(1 − ΓD3)(Γ
αδψα − δλ)θ , (4.10)

where the bulk susy variations are δψm = 0 and δλ = 0. Substituting the expressions for

δψm and δλ without Wnp into the above equation yields

LD3 = 2
√

det g θ

{

e−φγm∇m +
1

8
G̃mnp̂γ

mnp̂

}

θ . (4.11)

Once we use the modified expressions for δφk, δφi, δφI and δλ in presence of Wnp, we

replace G by

Ĝ2,1 : Ĝabc = G̃abc ,

Ĝi
1,2 : Ĝi

abc
= G̃i

abc
+ ωabcDiWnp ,

Ĝ0,3 : Ĝabc = ωabc

DIW

∂IK
= G̃abc + ωabc

DIWnp

∂IK
,

Ĝ3,0 : Ĝabc = ωabc(τ̄ − τ)DτW = G̃abc + ωabc(τ̄ − τ)DIWnp . (4.12)

We can similarly analyze the Dirac equations. As expected, the number of fermion zero

modes remains the same as in the case of primitive (2, 1)-flux without the non-perturbative

term.
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A. Dimensional reduction of δψm

We demonstrate the dimensional reduction of the supersymmetric variation of the gravitino

on CY4.

Firstly, we write the internal gravitino variation using holomorphic and antiholomor-

phic indices.

δψe =

[

∇e +
1

24

(

3γbcdGebcd + γbcdGebcd

)

]

ξ ,

δψē =

[

∇ē +
1

24

(

3γbcdGebcd + γbcdGebcd

)

]

ξ . (A.1)

ψm is a vector-spinor, where m is an internal vector index which transforms in the 4 ⊕ 4̄

representation of SU(4). The spinor index of the eleven dimensional gravitino transforms in

the 32 under SO(1, 10). After compactification on a CY4, SO(1, 10) is broken to SU(4) ×
SO(2, 1) and the spinor transforms in the (1,2) ⊕ (4,2) ⊕ (6,2) ⊕ (4̄,2) ⊕ (1̄,2). This

means that ψe can be written as a sum of (0, p)-forms with one additional holomorphic or

antiholomorphic index.

ψe = φe|Ω〉 + φeāγ
ā|Ω〉 + φeabγ

ab|Ω〉 + φeabcγ
abc|Ω〉 + φeabcdγ

abcd|Ω〉 . (A.2)

Note that ψe in (A.2) has an additional spinor index which transforms in the 2 of SO(1, 2).

The rhs. of (A.1) is also such a spinor. ξ can be written as ξ = ε ⊗ η, where η is a

covariantly constant spinor on the CY4 and ε a supersymmetry parameter in the non-

compact dimensions. We write ξ as

ξ = ξ̂|Ω〉 + ξ̂abcdγ
abcd|Ω〉 . (A.3)

and should remember that ξ̂ has an additional index which transforms in the 2 under

SO(1, 2). The rhs. of the first equation in (A.1) is then

δψe =

[

∇e +
1

24

(

3γbcdGebcd + γbcdGebcd

)

]

ξ

=

[

∇e +
1

24

(

6Gebcdg
bd̄γ c̄ + Gebcdγ

bcd
)

]

ξ

= ∇e

(

ξ̂|Ω〉 + ξ̂abcdγ
abcd|Ω〉

)

+
1

4
Gebcdg

bd̄ξ̂γ c̄|Ω〉 +
1

24
Gebcdξ̂γ

bcd|Ω〉 . (A.4)

The open index e corresponds to a one-form index, which means that we have a collection

of (1, p)-forms.3 We compare the forms of the same type on both sides and obtain the

3We can introduce a second set of gamma matrices, which will commute with the first one, so for example

φa1...apā1...āq
γ̃a1 . . . γ̃apγā1 . . . γāq |Ω〉 will correspond to a (p, q)-form. Here we will omit the second set of

gamma-matrices to make the equations more transparent. A detailed explanation of this formalism is given

in Chapter 15 of [31].
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following set of equations:

δ
(

φeāγ
a|Ω〉

)

=
1

4
Gebcdg

bd̄ξ̂γ c̄|Ω〉 ,

δ
(

φeabγ
ab|Ω〉

)

= 0 ,

δ
(

φeabcγ
abc|Ω〉

)

=
1

24
Gebcdξ̂γ

bcd|Ω〉 . (A.5)

These are the only forms from (A.4), which do not vanish on a CY4.

Let us look at the second equation of (A.1) where the additional index is antiholomor-

phic. To see this index as a form index we have to make it holomorphic. This can be done

by applying Serre’s generalization of Poincaré duality

ψ̃abc = ψēg
eēωabce , (A.6)

where ωabce is the (4, 0)-form of the CY4.

δψ̃abc = geēωabce

(

∇ē +
1

24

(

3γfghGefgh + γfghGefgh

)

)

(

ξ̂|Ω〉 + ξ̂ijklγ
ijkl

)

|Ω〉

= geēωabce

(

∇ē +
1

4
Gēfghgfh̄γḡ +

1

24
Gefghγfgh

)

(

ξ̂|Ω〉 + ξ̂ijklγ
ijkl

)

|Ω〉 . (A.7)

Again, comparing the forms of the same type gives us

δ
(

φ̃abcāγ
ā
)

|Ω〉 =
1

4
geēωabceGefghgfh̄γḡ ξ̂|Ω〉 ,

δ
(

φ̃abcabγ
ab

)

|Ω〉 = 0 ,

δ
(

φ̃abcabcγ
abc

)

|Ω〉 =
1

24
geēωabceGefghγfghξ̂|Ω〉 . (A.8)

Eqs. (A.5) and (A.8) can be expanded in the basis of harmonic forms on the CY4 as

follows:

δ
(

φiω
i
(1,3)

)

= giω
i
(1,3)ξ̂

δ
(

φIω
I
(1,1)

)

= gIω
I
(1,1)ξ̂

δ
(

φiω
i
(1,2)

)

= 0

δ
(

φiω
i
(2,3)

)

= 0 (A.9)

where ωI
(1,1) and ωi

(1,3) are basis elements of H1,1(CY4) and H1,3(CY4) respectively.

If we repeat the calculations for the type IIB case, we obtain an equation for the

(1, 2)-form, another one for the (2, 2)-form and (3, 0)-form for the dilatino:

δ
(

φeabγ
ab|Ω〉

)

= −1

8
Geabγ

abξ̂∗|Ω〉 − 1

16
gacgeaGabcγ

abξ̂∗|Ω〉 ,

δ
(

φe|abγ
ab|Ω〉

)

= − 1

16
Gabeγ

abξ̂∗|Ω〉 ,

δ
(

λ∗
abc

γabc|Ω〉
)

=
i

4
Gabcγ

abcξ̂∗|Ω〉 . (A.10)
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The second equation corresponds to the (2, 2)-form4 after applying Serre’s duality and to

a (1, 1)-form by forming the Hodge dual.

These equations (A.10) can be expanded in the basis of harmonic forms on the CY3

and written then as

δ
(

φi ω
i
(1,2)

)

= gi ω
i
(1,2)ξ̂ , i = 1, . . . , h(2,1) ,

δ
(

φI ωI
(1,1)

)

= gI ωI
(1,1)ξ̂ , I = 1, . . . , h(1,1) ,

δ
(

λ(0,3)ω(0,3)

)

= g(0,3)ω(0,3)ξ̂ . (A.11)

φi, φI and λ(0,3) correspond to the 4-dimensional complex structure modulinos, the Kähler

modulinos and the dilatino respectively.

Finally, let us rewrite the variation of the modulino fields as it will be needed for our

investigation:

For the M-theory case:

δφk
ec =

1

4

(

Gebcdg
bd

)k

ξ̂ , k = 1, . . . , h(1,1) ,

δφi
eabc

=
1

24
Gi

eabc
ξ̂ , i = 1, . . . , h(3,1) ,

δφI
e|abc

=
1

24
Geabcξ̂ , I = 1, . . . , h(1,1) . (A.12)

For the type IIB case

δφi
eab

= −1

8
Gi

eab
ξ̂∗ − 1

16
gacgeaG

i
abc

ξ̂∗ , i = 1, . . . , h(2,1) ,

δφI
e|ab

= − 1

16
Geabξ̂

∗ , I = 1, . . . , h(1,1) ,

δλ∗
abc

=
i

4
Gabcξ̂

∗ . (A.13)

We label the modulinos with the indices k, i, I. Additionally, they have indices from

the beginning of the alphabet. Let us briefly comment about this.

A (p, q)-form ν can be expanded in the basis of harmonic (p, q)-forms ωi: ν = νi ω
i.

In the case of a complex manifold, the number of the harmonic forms is given by the

corresponding Hodge number h(p,q). On the other hand we can write the form in every local

patch as ν = νa1...ap a1...aqdza1 ∧ . . .∧ dzap ∧ dza1 ∧ . . . ∧ dzaq . If νa1...ap a1...aq are constant,

they should correspond to the coefficients νi. The whole νa1...ap a1...aq in all coordinate

patches span a vector space, in which so many νa1...ap a1...aq are linearly dependent by

the transition functions that the dimension of this vector space is h(p,q). The linearly

independent combinations of νa1...ap a1...aq are then in one to one correspondence to the νi.

4Note, that in this notation the holomorphic indices correspond to the holomorphic part of the form

and vice versa. The antiholomorphic index ē has no meaning as form index before applying Serre’s duality.

That is why we put | there to prevent its mixing with the antiholomorphic indices.
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